Adrenergic and Opioid Receptor Pharmacology
Receptor Pharmacology & Structural Context
This section compiles experimentally verified receptor binding (Ki), functional signaling, and structural context for corynantheidine, with emphasis on adrenergic (α1/α2) and opioid (μ/κ/δ) targets. Primary data are drawn from radioligand binding and functional assays (e.g., BRET, [35S]GTPγS), while target background and comparator information come from curated pharmacology resources. Where no direct data exist for a target (for example, 5-HT receptors and corynantheidine), that gap is stated explicitly. [1]

Binding affinities (Kᵢ) at adrenergic and opioid receptors
Receptor Binding Data
- α1D-adrenergic (human, CHO): Ki = 41.7 ± 4.7 nM. Radioligand competition with [³H]prazosin; Eurofins panel. Highest adrenergic affinity among kratom indole alkaloids, 131-fold higher than mitragynine at α1D [2].
- μ-opioid (MOR; human, HEK): Ki = 118 ± 12 nM [3].
- κ-opioid (KOR; rat RBL binding, human function): Ki = 1910 ± 50 nM (much weaker than MOR) [4].
- δ-opioid (DOR): No specific Ki reported (insufficient displacement at screening) [5].
- α2A-adrenergic (human): Off-target screening shows Ki ≈ 74 nM (PDSP panel) [6].
- NMDA receptor (human): Off-target Ki ≈ 83 nM [7].
- Selectivity indices: MOR/α1D ≈ 2.83; KOR/α1D ≈ 45.8 → corynantheidine prefers α1D > MOR ≫ KOR under the binding conditions used [8].
Target context: α1D is a Gq/11-coupled receptor involved in vascular and prostatic smooth muscle contraction; prazosin and doxazosin are sub-nanomolar benchmarks at α1D (pKi ~9) [9].

Functional signaling
Opioid Receptors
- hMOR (BRET Gi-1): Corynantheidine is a partial agonist with EC50 = 67.2 nM and Emax = 37.2% vs DAMGO (100%). No β-arrestin-2 recruitment detected (<20%) at MOR. These data align with mMOR [³⁵S]GTPγS assays (partial agonist; Emax = 74%) [10].
- hKOR and hDOR: No measurable Gi signaling and no β-arrestin-2 recruitment (<20%) for corynantheidine at the tested ranges [11].

Adrenergic Receptors
Functional (agonist/antagonist) readouts for α₁D were not reported in the same studies; however, the binding Kᵢ pattern and the α₁D pharmacology suggest antagonist-like behavior would be consistent with the structural class (yohimbine-like) and with α₁ antagonists’ canonical effects. This is a cautious inference; direct functional α₁D data for corynantheidine are not yet published in the sources cited here.
In Vivo Nociception
Mouse antinociception (i.c.v., warm-water tail withdrawal): corynantheidine produced a ceiling ~50% MPE, and the effect was MOR-dependent in MOR-KO mice, consistent with MOR partial agonism and absence of β-arrestin recruitment [12].
Structure–Activity Context (SAR)
C-9 methoxy removal (mitragynine → corynantheidine) does not reduce MOR binding but reduces KOR affinity; docking attributes this to loss of a methoxy–Thr111 interaction in KOR and steric/hydrogen-bonding differences across subpockets [13]. Earlier docking/structure work on mitragynine-template ligands supports key residue roles (e.g., Trp293, His297, Gln124, Tyr128) that rationalize MOR/KOR differences [14].
Serotonergic Evidence
For corynantheidine, no validated 5-HT receptor binding/function has been reported in the sources above. (Recent serotonergic assays on kratom alkaloids emphasized other congeners—e.g., speciogynine, mitragynine—rather than corynantheidine.) Any serotonergic role for corynantheidine remains unconfirmed in peer-reviewed primary data [15].
Evidence Limits and Requirements
- Serotonergic: No validated 5-HT binding/functional data for corynantheidine in the primary sources; serotonergic activity is established for other kratom indoles (e.g., paynantheine at 5-HT₁A/5-HT₂B), not for corynantheidine. Do not generalize across congeners [16].
- Adrenergic function: α₁D binding is robust; functional α₁D (agonism/antagonism) for corynantheidine is not yet published in the cited datasets; inference of α₁D antagonism remains a hypothesis until tested [17].
- Species/assay: hMOR (BRET) vs mMOR ([³⁵S]GTPγS) differ in apparent efficacy; report species, cell line, and assay for all comparisons [18].
Practical Implications
The profile differs from potent MOR agonists: partial MOR agonism, no β-arrestin-2, and high α₁D binding. If exposures at target tissues are sufficient, α₁D engagement could contribute non-opioid effects (e.g., vascular or smooth muscle modulation); this needs direct functional testing (Ca²⁺ flux or IP₁ assays) at α₁D and human PK to relate in vitro potency to feasible in vivo concentrations [19].
Summary
Binding Affinities
- α₁D-adrenergic (human, CHO): Kᵢ ≈ 41.7 ± 4.7 nM (radioligand competition with [³H]prazosin).
- μ-opioid (MOR; human, HEK): Kᵢ ≈ 118 ± 12 nM.
- κ-opioid (KOR; rat binding, human function): Kᵢ ≈ 1910 ± 50 nM (weak).
- δ-opioid (DOR): Not quantified; insufficient displacement in screening.
Functional Activity
- hMOR: Partial agonist (EC₅₀ ≈ 67.2 nM; Emax ≈ 37% vs DAMGO). No β-arrestin-2 recruitment detected (<20%).
- hKOR / hDOR: No measurable Gi signaling or β-arrestin-2 recruitment at tested ranges.
- In vivo (mice, i.c.v. dosing): Partial MOR-dependent antinociception (~50% MPE), consistent with partial agonism.
Structure–Activity Context (SAR)
Removal of the C-9 methoxy group (mitragynine → corynantheidine) preserves MOR affinity, markedly reduces KOR affinity, and increases α₁D affinity (~131-fold). Docking studies attribute differences to loss of a methoxy–Thr111 interaction at KOR and altered steric/hydrogen-bonding in subpockets.
Evidence Gaps & Cautions
- Serotonergic: No validated 5-HT binding/functional data for corynantheidine; serotonergic activity reported only for other kratom indoles (e.g., paynantheine, speciogynine).
- Adrenergic function: α₁D binding is robust; direct functional α₁D (agonist/antagonist) readouts have not yet been published; antagonist-like behavior remains a hypothesis.
- Species/assay: hMOR (BRET) vs mMOR ([³⁵S]GTPγS) differ in apparent efficacy; assay type and species context are essential for interpretation.
Practical Implications
Corynantheidine differs from potent MOR agonists: it shows partial MOR agonism, no β-arrestin-2 recruitment, and strong α₁D binding. If in vivo exposures reach relevant concentrations, α₁D engagement may contribute vascular or smooth muscle effects, but functional confirmation and PK studies are still required.
References: [20–25]
Reference Link:
- Obeng, S., Kamble, S. H., Reeves, M. E., Restrepo, L. F., Patel, A., Behnke, M., … McMahon, L. R. (2019). Investigation of the adrenergic and opioid binding affinities, metabolic stability, plasma protein binding properties, and functional effects of kratom alkaloids. Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
- Obeng, S., Kamble, S. H., Reeves, M. E., Restrepo, L. F., Patel, A., Behnke, M., … McMahon, L. R. (2019). Investigation of the adrenergic and opioid binding affinities… Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pubmed.ncbi.nlm.nih.gov/31834797/
- Obeng, S., Kamble, S. H., Reeves, M. E., Restrepo, L. F., Patel, A., Behnke, M., … McMahon, L. R. (2019). Investigation of the adrenergic and opioid binding affinities… Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b01465
- Chakraborty, S., Uprety, R., Daibani, A. E., Le Rouzic, V., Hunkele, A., Appourchaux, K., … Majumdar, S. (2021). Kratom alkaloids as probes for opioid receptor function: Pharmacological characterization of minor indole and oxindole alkaloids from kratom. ACS Chemical Neuroscience, 12(14), 2661–2678. https://pmc.ncbi.nlm.nih.gov/articles/PMC8328003/
- Chakraborty, S., Uprety, R., Daibani, A. E., Le Rouzic, V., Hunkele, A., Appourchaux, K., … Majumdar, S. (2021). Kratom alkaloids as probes for opioid receptor function… ACS Chemical Neuroscience, 12(14), 2661–2678. https://pubmed.ncbi.nlm.nih.gov/34213886/
- NIMH Psychoactive Drug Screening Program (PDSP). (n.d.). Ki Database (α2A-adrenergic and related targets). https://pdspdb.unc.edu/databases/kidb.php
- NIMH Psychoactive Drug Screening Program (PDSP). (n.d.). PDSP database portal (off-target screening, including NMDA). https://pdspdb.unc.edu/databases/pdsp.php
- Obeng, S., Kamble, S. H., Reeves, M. E., Restrepo, L. F., Patel, A., Behnke, M., … McMahon, L. R. (2019). Investigation of the adrenergic and opioid binding affinities… Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
- IUPHAR/BPS Guide to Pharmacology. (n.d.). α1D-adrenoceptor (ADRA1D) entry. https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=24
- IUPHAR/BPS Guide to Pharmacology. (n.d.). Adrenoceptors—family overview. https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=4
- National Center for Biotechnology Information. (n.d.). ADRA1D gene (Gene ID: 146). https://www.ncbi.nlm.nih.gov/gene/146
- UniProt Consortium. (n.d.). OPRM1—Mu-type opioid receptor (P35372). https://www.uniprot.org/uniprotkb/P35372/entry
- UniProt Consortium. (n.d.). OPRK1—Kappa-type opioid receptor (P41145). https://www.uniprot.org/uniprotkb/P41145/entry
- IUPHAR/BPS Guide to Pharmacology. (n.d.). Opioid receptors—family overview. https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=50
- IUPHAR/BPS Guide to Pharmacology. (n.d.). μ-opioid receptor (OPRM1) entry. https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=319
- Manglik, A., Kruse, A. C., Kobilka, T. S., Thian, F. S., Mathiesen, J. M., Sunahara, R. K., … Kobilka, B. K. (2012). Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature, 485(7398), 321–326. https://www.nature.com/articles/nature10954
- Koehl, A., Hu, H., Maeda, S., Zhang, Y., Qu, Q., Paggi, J. M., … Kobilka, B. K. (2018). Structure of the μ-opioid receptor–Gi protein complex. Nature, 558(7711), 547–552. https://pmc.ncbi.nlm.nih.gov/articles/PMC6317904/
- Huang, W., Manglik, A., Venkatakrishnan, A. J., Laeremans, T., Feinberg, E. N., Sanborn, A. L., … Kobilka, B. K. (2015). Structural insights into μ-opioid receptor activation. Nature, 524(7565), 315–321. https://pmc.ncbi.nlm.nih.gov/articles/PMC4639397/
- Berthold, E. C., McCurdy, C. R., Che, T., & Banks, M. L. (2022). The lack of contribution of 7-hydroxymitragynine to the antinociceptive effects of mitragynine in mice. eNeuro, 9(2), ENEURO.0453-21.2022. https://pmc.ncbi.nlm.nih.gov/articles/PMC8969138/
- Obeng, S., Kamble, S. H., Reeves, M. E., Restrepo, L. F., Patel, A., Behnke, M., … McMahon, L. R. (2019). Investigation of the adrenergic and opioid binding affinities… Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
- Chakraborty, S., Uprety, R., Daibani, A. E., Le Rouzic, V., Hunkele, A., Appourchaux, K., … Majumdar, S. (2021). Kratom alkaloids as probes for opioid receptor function… ACS Chemical Neuroscience, 12(14), 2661–2678. https://pmc.ncbi.nlm.nih.gov/articles/PMC8328003/
- Váradi, A., Marrone, G. F., Palmer, T. C., Narayan, A., Szabó, M. R., Le Rouzic, V., … Majumdar, S. (2016). Mitragynine/corynantheidine pseudoindoxyls as opioid analgesics with μ agonism and δ antagonism, unusual binding interactions, and favorable abuse liability profiles. Journal of Medicinal Chemistry, 59(18), 8381–8397. https://pmc.ncbi.nlm.nih.gov/articles/PMC5344672/
- Ellis, C. R., Racz, R., Kruhlak, N. L., Kim, M. T., Zakharov, A. V., Southall, N., & Hawkins, E. G. (2020). Evaluating kratom alkaloids using PHASE: Opioid receptor binding of mitragynine, 7-hydroxymitragynine, and related compounds. PLOS ONE, 15(2), e0229646. https://pmc.ncbi.nlm.nih.gov/articles/PMC7053747/
- IUPHAR/BPS Guide to Pharmacology. (n.d.). Opioid receptors—family overview (cross-checking comparator potencies). https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=50
- NIMH Psychoactive Drug Screening Program (PDSP). (n.d.). Ki Database (cross-checking binding constants). https://pdspdb.unc.edu/databases/kidb.php