Comparative Analysis Of Corynantheidine With Other Kratom Alkaloids (Occurrence, Receptor Pharmacology, Safety Context)
Compare corynantheidine with major kratom alkaloids, mitragynine, 7-hydroxymitragynine, paynantheine, speciociliatine, and speciogynine, using validated occurrence data and peer-reviewed receptor/pharmacology results. Figures and download links are embedded.
Data sources used
- Occurrence/quantitation (plant & products): validated UPLC–MS/MS ten-alkaloid method; ranges across leaves, extracts, teas, finished products [1].
- US product survey (N≈341; 10 alkaloids quantified): mean levels across finished products; screen against non-alkaloid adulterants [2].
- Chemotypes/variability (UPLC-HRMS across plants & products): distinct alkaloid profiles (affects minor-alkaloid levels) [3].
- Receptor binding/function: human MOR/KOR and α1D binding; MOR signaling and β-arrestin; in vivo antinociception [4].
- Serotonin receptor data (paynantheine comparator): 5-HT₁A activity [5].
- Potent MOR comparator (7-hydroxymitragynine): antinociception and context [6].

Occurrence (leaves, extracts, commercial products)
Validated UPLC–MS/MS ranges across matrices (percent of product mass, % w/w) from the ten-alkaloid QC panel:
- Mitragynine: 0.7–38.7
- Paynantheine: 0.3–12.8
- Speciociliatine: 0.4–12.3
- Speciogynine: 0.1–5.3
- 7-Hydroxymitragynine: 0.01–2.8
- Corynantheidine: 0.01–2.8 (minor constituent) [7]
Extensive U.S. product survey (2025) reported mean levels of minor alkaloids (including corynantheidine) <0.05% w/w in finished products; no non-alkaloid adulterants detected in the screened set [8].
Implication: Corynantheidine occurs at low levels relative to mitragynine; batch-to-batch variability is expected due to chemotypes and processing [9].

Receptor pharmacology
Binding (human targets; Kᵢ, nM)
- Corynantheidine: MOR 118 ± 12; KOR 1,910 ± 50; α₁D 41.7 ± 4.7. Affinity pattern: α₁D ≤ MOR ≪ KOR [10].
- Mitragynine (comparator): MOR 161; KOR 198; α₁D 5,480 [11].

Functional signaling and bias
Functional Pharmacology (human and in vivo data)
- Corynantheidine: partial hMOR agonist (BRET Gi-1 EC₅₀ ≈ 67 nM; Emax ≈ 37% of DAMGO); β-arrestin-2 not detected (<20%). In vivo, MOR-dependent antinociception after i.c.v. dosing confirms central MOR engagement with partial efficacy [12].
- Mitragynine: low-efficacy MOR agonist (context across reviews/primary datasets) [13].
- 7-Hydroxymitragynine: potent MOR agonist with strong antinociception; contribution to mitragynine’s effects in vivo is context-dependent (conversion/PK) [14].
- Paynantheine: strongest evidence is serotonin 5-HT₁A activity; opioid agonism weak/absent in primary datasets [15].

Comparative interpretation
Comparative Target and Functional Profiles
- Target preference: Corynantheidine exhibits high α1D binding and moderate MOR binding with weak KOR binding, whereas mitragynine shows stronger KOR relative to corynantheidine and much weaker α1D. This is consistent with C-9 demethoxy substitution (mitragynine → corynantheidine) altering KOR interactions and favoring α1D [16].
- Functional profile: Corynantheidine’s partial MOR agonism with minimal β-arrestin recruitment differs from 7-hydroxymitragynine’s potent MOR agonism; this divergence is relevant to analgesic efficacy and tolerability hypotheses but requires clinical verification [17].
- Serotonergic comparator: paynantheine adds a non-opioid serotonergic dimension (5-HT₁A), emphasizing polypharmacology beyond MOR/KOR [18].
Safety/toxicology context
Risk & Variability Context
- 7-Hydroxymitragynine: the most opioid-like and potent MOR agonist among the listed alkaloids (preclinical), warranting the greatest caution [19].
- Corynantheidine: partial MOR agonism with no β-arrestin-2 signal in vitro; limited human data [20].
- Population/product variability: chemotypes explain differing minor-alkaloid exposures across products [21].
Note: Regulatory/health-risk summaries for “kratom” overall are covered in independent assessments (e.g., WHO ECDD review); this subarticle centers on compound-level pharmacology and occurrence. (If needed, cite the WHO report alongside this section.)
Methods
Reporting Requirements
- Matrix and preparation (leaf/extract/tea/product) and extraction conditions.
- LC–MS/MS platform, column, gradient, MRM transitions, calibration range, LLOQ; internal standard.
- QC acceptance criteria (accuracy/precision) referencing the validated method you used.
Summary
Affinity and Functional Profile
Corynantheidine shows high α₁D-adrenergic affinity (Kᵢ = 41.7 ± 4.7 nM) and moderate μ-opioid (MOR) affinity (Kᵢ = 118 ± 12 nM), with weak κ-opioid (KOR) binding (Kᵢ = 1.91 µM) and no quantified δ-opioid (DOR) binding under screening cutoffs [22, 23]. Off-target screening also reports α₂A (Kᵢ ≈ 74 nM) and NMDA (Kᵢ ≈ 83 nM) interactions (binding only). Functionally, at human MOR, corynantheidine behaves as a partial agonist (EC₅₀ = 67.2 nM; Emax = 37.2% vs. DAMGO = 100%) with no β-arrestin-2 recruitment detected at MOR/KOR/DOR; mouse MOR assays and MOR-dependent antinociception after i.c.v. dosing corroborate partial efficacy in vivo. Selectivity indices calculated from Kᵢ values indicate α₁D > MOR ≫ KOR (MOR/α₁D ≈ 2.83; KOR/α₁D ≈ 45.8) [25]. Relative to mitragynine, C-9 demethoxylation (mitragynine → corynantheidine) maintains MOR, weakens KOR, and increases α₁D affinity ~131×, consistent with docking rationales (e.g., loss of a methoxy-mediated contact at KOR). Serotonergic data for corynantheidine remain unreported in primary assays (unlike other kratom indoles), and direct α₁D functional testing plus human PK are still needed to connect in-vitro potency to achievable exposures; receptor background and comparator potencies can be cross-checked in IUPHAR/BPS resources.
Reference Link:
- Sharma, A., McCurdy, C. R., Hamid, A., & Grundmann, O. (2019). Simultaneous quantification of ten key kratom alkaloids and the exploration of in vitro pharmacokinetics using LC–MS/MS. Drug Testing and Analysis, 11(6), 861–875. https://pmc.ncbi.nlm.nih.gov/articles/PMC7927418/
- Sharma, A., Kamble, S. H., León, F., et al. (2025). Chemical analysis and alkaloid intake for kratom products available in the United States. Drug Testing and Analysis. https://pubmed.ncbi.nlm.nih.gov/40377101/
- Manwill, P. K., Gounder, R., Beck, A. C., et al. (2022). Characterization of kratom (Mitragyna speciosa) products and raw materials by UPLC-HRMS: Evidence for chemotypes. Planta Medica, 88(9), 757–769. https://pmc.ncbi.nlm.nih.gov/articles/PMC9343938/
- Obeng, S., Kamble, S. H., Reeves, M. E., et al. (2019). Investigation of the adrenergic and opioid binding affinities, metabolic stability, plasma protein binding properties, and functional effects of kratom alkaloids. Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
- León, F., Habib, E., Trojahn, T., et al. (2021). Activity of Mitragyna speciosa (kratom) alkaloids at human serotonin receptors. Journal of Medicinal Chemistry, 64(17), 12715–12723. https://pubmed.ncbi.nlm.nih.gov/34467758/
- Matsumoto, K., Horie, S., Ishikawa, H., et al. (2004). Antinociceptive effect of 7-hydroxymitragynine in mice: Discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa. Life Sciences, 74(17), 2143–2155. https://pubmed.ncbi.nlm.nih.gov/14969718/
- Sharma, A., McCurdy, C. R., Hamid, A., & Grundmann, O. (2019). Simultaneous quantification of ten key kratom alkaloids… Drug Testing and Analysis, 11(6), 861–875. https://pmc.ncbi.nlm.nih.gov/articles/PMC7927418/
- Sharma, A., Kamble, S. H., León, F., et al. (2025). Chemical analysis and alkaloid intake… Drug Testing and Analysis. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/dta.3906
- Manwill, P. K., Gounder, R., Beck, A. C., et al. (2022). Characterization of kratom products and raw materials… Planta Medica, 88(9), 757–769. https://pmc.ncbi.nlm.nih.gov/articles/PMC9343938/
- Obeng, S., Kamble, S. H., Reeves, M. E., et al. (2019). Investigation of the adrenergic and opioid binding affinities… Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
- Obeng, S., Kamble, S. H., Reeves, M. E., et al. (2019). Investigation of the adrenergic and opioid binding affinities… Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
- Chakraborty, S., Uprety, R., Daibani, A. E., et al. (2021). Kratom alkaloids as probes for opioid receptor function: Pharmacological characterization of minor indole and oxindole alkaloids from kratom. ACS Chemical Neuroscience, 12(14), 2661–2678. https://pmc.ncbi.nlm.nih.gov/articles/PMC8328003/
- Kruegel, A. C., & Grundmann, O. (2018). The medicinal chemistry and neuropharmacology of kratom: A preliminary discussion and analysis of its potential for abuse. Neuropharmacology, 134, 108–120. https://pubmed.ncbi.nlm.nih.gov/28830758/
- Matsumoto, K., Horie, S., Ishikawa, H., et al. (2004). Antinociceptive effect of 7-hydroxymitragynine in mice. Life Sciences, 74(17), 2143–2155. https://pubmed.ncbi.nlm.nih.gov/14969718/
- León, F., Habib, E., Trojahn, T., et al. (2021). Activity of Mitragyna speciosa alkaloids at human serotonin receptors. Journal of Medicinal Chemistry, 64(17), 12715–12723. https://pubmed.ncbi.nlm.nih.gov/34467758/
- Obeng, S., Kamble, S. H., Reeves, M. E., et al. (2019). Investigation of the adrenergic and opioid binding affinities… (C-9 SAR discussion). Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
- Berthold, E. C., Beck, A. C., Kamble, S. H., et al. (2022). The lack of contribution of 7-hydroxymitragynine to mitragynine antinociception in mice. eNeuro, 9(2), ENEURO.0393-21.2021. https://pmc.ncbi.nlm.nih.gov/articles/PMC8969138/
- León, F., Habib, E., Trojahn, T., et al. (2021). Activity of Mitragyna speciosa alkaloids at human serotonin receptors. Journal of Medicinal Chemistry, 64(17), 12715–12723. https://pubmed.ncbi.nlm.nih.gov/34467758/
- World Health Organization. (2021). Kratom (Mitragyna speciosa) — review by the Expert Committee on Drug Dependence (44th ECDD). https://www.who.int/groups/expert-committee-on-drug-dependence/meetings/44th-ecdd
- Chakraborty, S., Uprety, R., Daibani, A. E., et al. (2021). Kratom alkaloids as probes for opioid receptor function… ACS Chemical Neuroscience, 12(14), 2661–2678. https://pmc.ncbi.nlm.nih.gov/articles/PMC8328003/
- Manwill, P. K., Gounder, R., Beck, A. C., et al. (2022). Characterization of kratom products and raw materials… Planta Medica, 88(9), 757–769. https://pmc.ncbi.nlm.nih.gov/articles/PMC9343938/
- Obeng, S., Kamble, S. H., Reeves, M. E., et al. (2019). Investigation of the adrenergic and opioid binding affinities… Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
- NIMH Psychoactive Drug Screening Program (PDSP). (n.d.). Ki Database (α2A, NMDA off-target entries). https://pdspdb.unc.edu/databases/kidb.php
- IUPHAR/BPS Guide to Pharmacology. (n.d.). Opioid receptors—family overview (includes μ/OPRM1 page links). https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=50
- IUPHAR/BPS Guide to Pharmacology. (n.d.). α1D-adrenoceptor (ADRA1D). https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=24