Comparative Analysis Of Corynantheidine With Other Kratom Alkaloids (Occurrence, Receptor Pharmacology, Safety Context)

Compare corynantheidine with major kratom alkaloids, mitragynine, 7-hydroxymitragynine, paynantheine, speciociliatine, and speciogynine, using validated occurrence data and peer-reviewed receptor/pharmacology results. Figures and download links are embedded.

Data sources used

  • Occurrence/quantitation (plant & products): validated UPLC–MS/MS ten-alkaloid method; ranges across leaves, extracts, teas, finished products [1].
  • US product survey (N≈341; 10 alkaloids quantified): mean levels across finished products; screen against non-alkaloid adulterants [2].
  • Chemotypes/variability (UPLC-HRMS across plants & products): distinct alkaloid profiles (affects minor-alkaloid levels) [3].
  • Receptor binding/function: human MOR/KOR and α1D binding; MOR signaling and β-arrestin; in vivo antinociception [4].
  • Serotonin receptor data (paynantheine comparator): 5-HT₁A activity [5].
  • Potent MOR comparator (7-hydroxymitragynine): antinociception and context [6].

Occurrence (leaves, extracts, commercial products)

Validated UPLC–MS/MS ranges across matrices (percent of product mass, % w/w) from the ten-alkaloid QC panel:

  • Mitragynine: 0.7–38.7
  • Paynantheine: 0.3–12.8
  • Speciociliatine: 0.4–12.3
  • Speciogynine: 0.1–5.3
  • 7-Hydroxymitragynine: 0.01–2.8
  • Corynantheidine: 0.01–2.8 (minor constituent) [7]

Extensive U.S. product survey (2025) reported mean levels of minor alkaloids (including corynantheidine) <0.05% w/w in finished products; no non-alkaloid adulterants detected in the screened set [8].

Implication: Corynantheidine occurs at low levels relative to mitragynine; batch-to-batch variability is expected due to chemotypes and processing [9].

Receptor pharmacology

Binding (human targets; Kᵢ, nM)

  • Corynantheidine: MOR 118 ± 12; KOR 1,910 ± 50; α₁D 41.7 ± 4.7. Affinity pattern: α₁D ≤ MOR ≪ KOR [10].
  • Mitragynine (comparator): MOR 161; KOR 198; α₁D 5,480 [11].

Functional signaling and bias

Functional Pharmacology (human and in vivo data)

  • Corynantheidine: partial hMOR agonist (BRET Gi-1 EC₅₀ ≈ 67 nM; Emax ≈ 37% of DAMGO); β-arrestin-2 not detected (<20%). In vivo, MOR-dependent antinociception after i.c.v. dosing confirms central MOR engagement with partial efficacy [12].
  • Mitragynine: low-efficacy MOR agonist (context across reviews/primary datasets) [13].
  • 7-Hydroxymitragynine: potent MOR agonist with strong antinociception; contribution to mitragynine’s effects in vivo is context-dependent (conversion/PK) [14].
  • Paynantheine: strongest evidence is serotonin 5-HT₁A activity; opioid agonism weak/absent in primary datasets [15].

Comparative interpretation

Comparative Target and Functional Profiles

  • Target preference: Corynantheidine exhibits high α1D binding and moderate MOR binding with weak KOR binding, whereas mitragynine shows stronger KOR relative to corynantheidine and much weaker α1D. This is consistent with C-9 demethoxy substitution (mitragynine → corynantheidine) altering KOR interactions and favoring α1D [16].
  • Functional profile: Corynantheidine’s partial MOR agonism with minimal β-arrestin recruitment differs from 7-hydroxymitragynine’s potent MOR agonism; this divergence is relevant to analgesic efficacy and tolerability hypotheses but requires clinical verification [17].
  • Serotonergic comparator: paynantheine adds a non-opioid serotonergic dimension (5-HT₁A), emphasizing polypharmacology beyond MOR/KOR [18].

Safety/toxicology context

Risk & Variability Context
  • 7-Hydroxymitragynine: the most opioid-like and potent MOR agonist among the listed alkaloids (preclinical), warranting the greatest caution [19].
  • Corynantheidine: partial MOR agonism with no β-arrestin-2 signal in vitro; limited human data [20].
  • Population/product variability: chemotypes explain differing minor-alkaloid exposures across products [21].

Note: Regulatory/health-risk summaries for “kratom” overall are covered in independent assessments (e.g., WHO ECDD review); this subarticle centers on compound-level pharmacology and occurrence. (If needed, cite the WHO report alongside this section.)

Methods

Reporting Requirements
  • Matrix and preparation (leaf/extract/tea/product) and extraction conditions.
  • LC–MS/MS platform, column, gradient, MRM transitions, calibration range, LLOQ; internal standard.
  • QC acceptance criteria (accuracy/precision) referencing the validated method you used.

Summary

Affinity and Functional Profile

Corynantheidine shows high α₁D-adrenergic affinity (Kᵢ = 41.7 ± 4.7 nM) and moderate μ-opioid (MOR) affinity (Kᵢ = 118 ± 12 nM), with weak κ-opioid (KOR) binding (Kᵢ = 1.91 µM) and no quantified δ-opioid (DOR) binding under screening cutoffs [22, 23]. Off-target screening also reports α₂A (Kᵢ ≈ 74 nM) and NMDA (Kᵢ ≈ 83 nM) interactions (binding only). Functionally, at human MOR, corynantheidine behaves as a partial agonist (EC₅₀ = 67.2 nM; Emax = 37.2% vs. DAMGO = 100%) with no β-arrestin-2 recruitment detected at MOR/KOR/DOR; mouse MOR assays and MOR-dependent antinociception after i.c.v. dosing corroborate partial efficacy in vivo. Selectivity indices calculated from Kᵢ values indicate α₁D > MOR ≫ KOR (MOR/α₁D ≈ 2.83; KOR/α₁D ≈ 45.8) [25]. Relative to mitragynine, C-9 demethoxylation (mitragynine → corynantheidine) maintains MOR, weakens KOR, and increases α₁D affinity ~131×, consistent with docking rationales (e.g., loss of a methoxy-mediated contact at KOR). Serotonergic data for corynantheidine remain unreported in primary assays (unlike other kratom indoles), and direct α₁D functional testing plus human PK are still needed to connect in-vitro potency to achievable exposures; receptor background and comparator potencies can be cross-checked in IUPHAR/BPS resources.

Reference Link:

  1. Sharma, A., McCurdy, C. R., Hamid, A., & Grundmann, O. (2019). Simultaneous quantification of ten key kratom alkaloids and the exploration of in vitro pharmacokinetics using LC–MS/MS. Drug Testing and Analysis, 11(6), 861–875. https://pmc.ncbi.nlm.nih.gov/articles/PMC7927418/
  2. Sharma, A., Kamble, S. H., León, F., et al. (2025). Chemical analysis and alkaloid intake for kratom products available in the United States. Drug Testing and Analysis. https://pubmed.ncbi.nlm.nih.gov/40377101/
  3. Manwill, P. K., Gounder, R., Beck, A. C., et al. (2022). Characterization of kratom (Mitragyna speciosa) products and raw materials by UPLC-HRMS: Evidence for chemotypes. Planta Medica, 88(9), 757–769. https://pmc.ncbi.nlm.nih.gov/articles/PMC9343938/
  4. Obeng, S., Kamble, S. H., Reeves, M. E., et al. (2019). Investigation of the adrenergic and opioid binding affinities, metabolic stability, plasma protein binding properties, and functional effects of kratom alkaloids. Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
  5. León, F., Habib, E., Trojahn, T., et al. (2021). Activity of Mitragyna speciosa (kratom) alkaloids at human serotonin receptors. Journal of Medicinal Chemistry, 64(17), 12715–12723. https://pubmed.ncbi.nlm.nih.gov/34467758/
  6. Matsumoto, K., Horie, S., Ishikawa, H., et al. (2004). Antinociceptive effect of 7-hydroxymitragynine in mice: Discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa. Life Sciences, 74(17), 2143–2155. https://pubmed.ncbi.nlm.nih.gov/14969718/
  7. Sharma, A., McCurdy, C. R., Hamid, A., & Grundmann, O. (2019). Simultaneous quantification of ten key kratom alkaloids… Drug Testing and Analysis, 11(6), 861–875. https://pmc.ncbi.nlm.nih.gov/articles/PMC7927418/
  8. Sharma, A., Kamble, S. H., León, F., et al. (2025). Chemical analysis and alkaloid intake… Drug Testing and Analysis. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/dta.3906
  9. Manwill, P. K., Gounder, R., Beck, A. C., et al. (2022). Characterization of kratom products and raw materials… Planta Medica, 88(9), 757–769. https://pmc.ncbi.nlm.nih.gov/articles/PMC9343938/
  10. Obeng, S., Kamble, S. H., Reeves, M. E., et al. (2019). Investigation of the adrenergic and opioid binding affinities… Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
  11. Obeng, S., Kamble, S. H., Reeves, M. E., et al. (2019). Investigation of the adrenergic and opioid binding affinities… Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
  12. Chakraborty, S., Uprety, R., Daibani, A. E., et al. (2021). Kratom alkaloids as probes for opioid receptor function: Pharmacological characterization of minor indole and oxindole alkaloids from kratom. ACS Chemical Neuroscience, 12(14), 2661–2678. https://pmc.ncbi.nlm.nih.gov/articles/PMC8328003/
  13. Kruegel, A. C., & Grundmann, O. (2018). The medicinal chemistry and neuropharmacology of kratom: A preliminary discussion and analysis of its potential for abuse. Neuropharmacology, 134, 108–120. https://pubmed.ncbi.nlm.nih.gov/28830758/
  14. Matsumoto, K., Horie, S., Ishikawa, H., et al. (2004). Antinociceptive effect of 7-hydroxymitragynine in mice. Life Sciences, 74(17), 2143–2155. https://pubmed.ncbi.nlm.nih.gov/14969718/
  15. León, F., Habib, E., Trojahn, T., et al. (2021). Activity of Mitragyna speciosa alkaloids at human serotonin receptors. Journal of Medicinal Chemistry, 64(17), 12715–12723. https://pubmed.ncbi.nlm.nih.gov/34467758/
  16. Obeng, S., Kamble, S. H., Reeves, M. E., et al. (2019). Investigation of the adrenergic and opioid binding affinities… (C-9 SAR discussion). Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
  17. Berthold, E. C., Beck, A. C., Kamble, S. H., et al. (2022). The lack of contribution of 7-hydroxymitragynine to mitragynine antinociception in mice. eNeuro, 9(2), ENEURO.0393-21.2021. https://pmc.ncbi.nlm.nih.gov/articles/PMC8969138/
  18. León, F., Habib, E., Trojahn, T., et al. (2021). Activity of Mitragyna speciosa alkaloids at human serotonin receptors. Journal of Medicinal Chemistry, 64(17), 12715–12723. https://pubmed.ncbi.nlm.nih.gov/34467758/
  19. World Health Organization. (2021). Kratom (Mitragyna speciosa) — review by the Expert Committee on Drug Dependence (44th ECDD). https://www.who.int/groups/expert-committee-on-drug-dependence/meetings/44th-ecdd
  20. Chakraborty, S., Uprety, R., Daibani, A. E., et al. (2021). Kratom alkaloids as probes for opioid receptor function… ACS Chemical Neuroscience, 12(14), 2661–2678. https://pmc.ncbi.nlm.nih.gov/articles/PMC8328003/
  21. Manwill, P. K., Gounder, R., Beck, A. C., et al. (2022). Characterization of kratom products and raw materials… Planta Medica, 88(9), 757–769. https://pmc.ncbi.nlm.nih.gov/articles/PMC9343938/
  22. Obeng, S., Kamble, S. H., Reeves, M. E., et al. (2019). Investigation of the adrenergic and opioid binding affinities… Journal of Medicinal Chemistry, 62(24), 11436–11449. https://pmc.ncbi.nlm.nih.gov/articles/PMC7676998/
  23. NIMH Psychoactive Drug Screening Program (PDSP). (n.d.). Ki Database (α2A, NMDA off-target entries). https://pdspdb.unc.edu/databases/kidb.php
  24. IUPHAR/BPS Guide to Pharmacology. (n.d.). Opioid receptors—family overview (includes μ/OPRM1 page links). https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=50
  25. IUPHAR/BPS Guide to Pharmacology. (n.d.). α1D-adrenoceptor (ADRA1D). https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=24